

* داوطلب گرامى، عدم درج مشخصات و امضا در مندرجات جدول زير، بهمنزلهُ عدم حضور شما در جلسهٔ آزمون است.

PART A: Vocabulary
Directions: Choose the word or phrase (1), (2), (3), or (4) that best completes each sentence. Then mark the answer on your answer sheet.

1- When you \qquad a meeting, it is important to speak clearly, confidently and at a good pace.

1) assess
2) propagate
3) address
4) impress

2- People like the newly proposed system, but because of the costs involved we do not believe it is ---------, and we need to look for other options.

1) compliant
2) defensive
3) ingenuous
4) viable

3- The country in question is very poor, and one in seven children dies in \qquad

1) infancy
2) nutrition
3) malfunction
4) mortality

4- I don't consider myself to be particularly ---------, but when I'm given a job, I make sure it gets done.

1) industrious
2) spontaneous
3) risky
4) unexceptional

5- The new airliner is more environmentally-friendly than other aircraft, its only being its limited flying range.

1) demand
2) drawback
3) controversy
4) attribute

6- The celebrity will -------- assistance from the police to keep stalkers away from his property.

1) extend
2) invoke
3) absolve
4) withdraw

7- When plates in the Earth's crust slide or grind against one another, an earthquake with devastating consequences may be \qquad

1) derived
2) surpassed
3) triggered
4) traced

PART B: Cloze Test

Directions: Read the following passage and decide which choice (1), (2), (3), or (4) best fits each space. Then mark the correct choice on your answer sheet.

The new species was named Maiacetus inuus, which means "mother whale," (8) \qquad - in the family Protocetidae. Assignment to a new species was justified due to critical differences from other protocetid whales, such as solidly co-ossified left and right dentaries (lower jaws), (9) ---------- in the ankle, and significant disparity in hind
limb elements. The fossils show (10) \qquad this new species' length is unimpressive relative to some extant (living) whales, but still, Maiacetus inuus measures a respectable 2.6 meters.

8-	1) placed	2) that placed	3) was placed	4) and was placed
9-	1) there were variations	2) varying		
3) variations 2) that 4) which varied				
10- 1) when 3) although	4) for			

PART C: Reading Comprehension
Directions: Read the following three passages and answer the questions by choosing the best choice (1), (2), (3), or (4). Then mark the correct choice on your answer sheet.

PASSAGE 1:

As for any reactor operation, the primary purpose of fed-batch operation is to maximize the rates of cell growth and product formation so that the total rate of product formation (productivity) or product yield (selectivity) is maximized. The desired product may be classified into (1) high volume-high margin products, (2) high volume-low margin products, (3) low volume-high margin products, and (4) low volume-low margin products. For high-margin products, the raw material cost may be negligible in comparison to the price of the product. In this case, there is little incentive to minimize the raw material cost. However, the production cost, which is roughly inversely proportional to the productivity, may be reduced by increasing the rate (productivity). For low-margin products, there is much incentive to minimize both the raw material and the processing costs.

For those processes for which the raw material is relatively inexpensive, one may wish to maximize the productivity (rate), while one may wish to improve the yield (selectivity) if the cost of the raw material and/or the product is relatively high. Ultimately, one must minimize the total production costs. This is achieved by regulating the feed rates of the limiting substrates, nitrogen and phosphate sources, inducers, precursors, or intermediates and by the selection of proper initial conditions. Through the manipulation of the feed rates of the medium containing the substrate and nutrients, the fed-batch operation allows regulation of the concentration of key substances that control the cell growth and/or product formation rate.

11- The main objective of reactor operations is \qquad

1) to increase the rate of product formation
2) to select the rate of cell growth
3) to control the factors affecting process
4) to achieve the fed-batch operation

12- A high-margin product is an item

1) will result in a high profit margin
2) that its final product has a high price
3) that its raw materials are rare in market
4) having a high desirability among people

13- The word "roughly" in paragraph 1 is closest in meaning to

1) nearly
2) directly
3) exactly
4) necessarily

14- There is high motivation for low margin products

1) to lessen the total costs
2) to minimize the raw materials
3) to maximize the price of product yield
4) to increase product classification

15- Managing the cell growth is carried out through

1) regulating the concentration of essential substances
2) specializing the feed rates of medium
3) confining the substrate and nutrients
4) selecting the sufficient intermediates

PASSAGE 2:

While purely synthetic polymer production has been incredibly successful in biomaterials science, there are of course notable disadvantages. Whilst the incredible longevity and durability of polymers has been a boon to multiple respective industries, the formation and subsequent concentration of micro-plastics in ecosystems worldwide has been a major concern of both conservationists and materials scientists alike. Additionally, the mass-manufacture, usage, and disposal of commonly used polymers generates harmful emissions such as heavy metals, greenhouse gasses, and aerosolized micro-plastics. Despite the development of international public awareness strategies to reduce polymer use globally, there is a clear need in the biomaterials sector for mass-production of polymers that retain or improve on current bioactive properties and reducing the environmental cost. One proposed solution is through the use of bacterial fermentation, a process by which naturally occurring or genetically engineered bacteria are used to produce polymers historically only available by synthetic pathways. This technique holds various advantages over the previous chemical synthetic processes, including (generally) lower temperatures and pressures, enantiomeric selectivity and a wide manufacturing variety of biodegradable polymers, many of which are degradable or bioresorbable, in physiological conditions. Furthermore, even though many polymers cannot be currently synthesized by bacteria, the relatively simple molecules such as lactic acid that often make up the feedstock allow for further integration of less energy-intensive manufacturing methods in the polymer supply chain.

16- This passage is mainly about \qquad

1) production of by bacteria polymers
2) advantages and disadvantages of polymers
3) polymers as an inevitable synthetic material
4) various applications of polymers

17- The word "boon" in line 3 is similar in meaning to

1) blessing
2) choice
3) range
4) goal

18- Production of hazardous emissions from polymers is due to all of the following EXCEPT --------.

1) their high molecular weight
2) their high-volume manufacturing
3) their waste removal methods
4) the way of their utilization

19- Which one is not a feature of polymers produced through bacterial fermentation?

1) They all can be degraded in the environment.
2) They need lower temperatures and pressures.
3) There are numerus manufacturing varieties.
4) There is the ability of selecting between two enantiomeric substrates.

20- In the polymer supply chain, Lactic acid, according to the passage, ---------.

1) provides further integration of less energy-intensive manufacturing methods
2) doesn't allow polymers to be synthesized by bacteria
3) can produce the best kind of biopolymers with the lowest cost
4) facilitates the degradability process of polymers

PASSAGE 3:

Textile industries are using structurally different varieties of reactive dyes for accomplishment of many shades of color, stronghold profiles, comfort to use, less energy utilization and excellent colors. The more commonly used dyes are anthraquinone, azo dyes and phthalocyanine. These coloring agents are become serious threats to all life form as they are carcinogenic and mutagenic in nature. More than 100,000 commercial dyes are available in market whose annual production is more than one million tons. Out of all the dyes used for dying and printing, around 20% of dyes are being discharged into the environmental sink because of its low level of affinity with the fabrics. The aromatic amines produced after Azo dyes biotransformation has mutagenic and carcinogenic effects. The discharge of these effluent containing dyes into the water resources results in alteration of pH , reduction in light penetration and gas solubility, as well as raise in the COD, BOD, TOC of water resources that causes inimical effects on all life form including animals and plants. So, the management of textile effluent is inevitable before final discharge to the ecosystem.

Many studies have been conducted on the consequence of biological, chemical and physical treatments of textile wastewater. Treatment of textile wastewater with already existing physicochemical methods is inefficient due to its inability to reduce COD, TOC, BOD, color, pH and metals. These techniques are costly and generate huge quantity of toxicants and sludge. Textile wastewater treatment using biological method is an ecofriendly and low cost treatment methods. Many biological agents such as bacteria, yeasts, fungi, algae and actimonycetes are capable of degrading azo dyes, among which bacterial cells represent an inexpensive and promising tool for the removal of different azo dyes from textile effluent. Different taxonomic group of bacteria reported for dye degradation. All biological treatments involve use of biocatalysts to oxidize recalcitrant pollutants. But, they have some drawbacks like low biodegradability and no efficient removal of refractory compounds.

21- The more widely used dyestuffs

1) lead to cancer or genetic mutation
2) include numerous varieties of reactive dyes
3) are structurally more decomposable
4) are the most penetrating colors among all diversities

22- Out of all used dyes, according to the passage,

1) $1 / 5$ th is released in the environment
2) 20% shows the highest affinity to fabrics
3) many produces toxic aromatic amines
4) 80% is synthesized biochemically

23- The word "inimical" in paragraph 1 is similar in meaning to

1) adverse
2) permanent
3) clear
4) indirect

24- All of the following are features of using physicochemical methods for treatment of textile effluent EXCEPT

1) they are ecofriendly and low cost treatment methods
2) they produce huge quantity of toxicants and sludge
3) they can't reduce COD, TOC, BOD, color, pH and metals
4) they results in increase in light penetration and gas solubility

25- Using biocatalysts to oxidize recalcitrant pollutants

1) Leaves indestructible refractory compounds and has low biodegradability
2) intensify the resistant factor in pollutants
3) reduce the need to different taxonomic group of bacteria for degrading dyes
4) lessen the required time for removal of effluents

צץ- واكنش فاز مايع درجه صفر بازگشتنايذير A

 تمامى شرايط عملياتى ديگُر يكسان باشد.)

$$
\begin{array}{lr}
0,9(t & 0,4(1) \\
0,1 \Delta(4 & 0, \mu \Delta(4)
\end{array}
$$

 محصول زائد T، مقادير C C
 انجام مى شود. سرعت واكنش در راكتـور اول چنـــد برابـر راكتــور دوم اسـت؟ (بـراى هــر دو راكتــور

$$
\left(k=r \frac{1}{\min }, \tau=r \min \right.
$$

$$
\begin{aligned}
& V \text { (r } \\
& r(1 \\
& \text { ¢ } \\
& 1 \text { (} \\
& \text { rq- كدام مورد درست است؟ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ¢) راكتور مخزنى همزندار پيوسته (Mixed) هميشه بازده بالاترى از بقيه راكتورها دارد. }
\end{aligned}
$$

$\mathrm{A} \xrightarrow{\mathrm{k}_{1}} \mathrm{C}$

$$
\begin{gathered}
\stackrel{k_{Y}}{\mathrm{~A}} \mathrm{C}(1 \\
\mathrm{A} \rightarrow \mathrm{k}_{1} \\
\mathrm{~B}
\end{gathered}
$$

 مى شود. اين نوع واكنش جزء كدام واكنشها محسوب مى شورد؟

براى واكنش A حفظ شرايط ديگَر، ميزان درصد تبديل چه تغ تغييرى مى
() بَ برابر میشود.
rr- براى واكنش A K اما اكر غلظت اوليه آن ارْ مول بر ليتر باشد، زمان نيمه عمر آن

 است، غلظت تعادلى A كدام است؟

$$
r / \Delta(r
$$

rol

$$
\mathcal{Y}_{4}
$$

$$
\Gamma_{/ \omega} \omega(\Gamma
$$

هr هr واكنش با

> MO (r
$90(1)$
Y (Y) در زمان محدود به پايان نمىرسد.
$11 \circ(\Gamma$
צ צ-部 $=1$ min $^{-1} ، k_{1}=r \min ^{-1}$ تعادلى كدام است؟

$$
\begin{aligned}
x_{\mathrm{A}}=0, \mu r, \mathrm{x}_{\mathrm{Ae}} & =0, q \vee(\gamma & x_{\mathrm{A}}=0, \mu \mu, x_{\mathrm{Ae}}=0, V \Delta() \\
\mathrm{x}_{\mathrm{A}}=0, \omega, \mathrm{x}_{\mathrm{Ae}} & =0, q \vee(\varphi & x_{\mathrm{A}}=0, \omega, x_{\mathrm{Ae}}=0, V \Delta(\mu
\end{aligned}
$$

 درصورتى

$$
0, \Delta V(Y
$$

$0 / \mathrm{b}(1$ $0, g V_{(4}$
 اتفاق مىافتند. اگر

$$
\begin{aligned}
& 10\left({ }^{4} \quad D(r) \quad\right. \text { (r }
\end{aligned}
$$

 پیيدا نكند، اين پيشنهاد چه تأثيرى بر ميزان تبديل خواهي

$$
\begin{aligned}
& \text { (Y) كسر تبديل كم مى شود. } \\
& \text { ¢ ¢) با اطلاعات موجود مشخص نيست. }
\end{aligned}
$$

٪) كسر تبديل زياد مى تبير تمود. كند.

بِيدههاى انتقال (انتقال جرم، مكانيك سيالات وانتقال حر/رت):

 است. كدام جمله در مور د اين فاز درست اسر است؟
(Y) فاز گازى بوده و محيط آن توربولنت است.

1) فاز كازى بوده و محيط آن آرام است است.

٪) فاز مايع بوده و محيط آن آرام آر است.
است $\frac{\text { m }}{\mathbf{m}}$
$\mathrm{K}_{\mathrm{L}}\left(\mathrm{r} \quad \mathrm{K}_{\mathrm{c}}\right.$ ()
 يكسان باشد.) چند برابر مىشود؟

$$
\frac{1}{r}\left(r \quad r \left(r \quad r \left(r \quad \frac{1}{1}()\right.\right.\right.
$$

$$
\begin{gathered}
\mathrm{F}_{\mathrm{G}}=r \mathrm{~K}_{\mathrm{y}} \frac{\mathrm{y}_{\mathrm{A}}}{\ln \frac{1}{1-\frac{1}{r} \mathrm{y}_{\mathrm{A}}}}(r \\
\mathrm{F}_{\mathrm{G}}=\frac{1}{r} \mathrm{~K}_{\mathrm{y}} \frac{\mathrm{y}_{\mathrm{A}}}{\ln \frac{1}{1-\frac{1}{r} \mathrm{y}_{\mathrm{A}}}}
\end{gathered}
$$

$$
\mathrm{F}_{\mathrm{G}}=\frac{1}{r} \mathrm{~K}_{\mathrm{y}} \frac{\ln \frac{1}{1-\frac{1}{r} y_{A}}}{\mathrm{y}_{\mathrm{A}}}(r
$$

「 بَ

 را شبهايايا فرض كنيد.)

$$
\begin{gathered}
\frac{\mathrm{dr}}{\mathrm{dt}}=-\mathrm{N}_{\mathrm{A}} \mathrm{M}_{\mathrm{A}} \rho_{\mathrm{A}} \\
\frac{\mathrm{dr}}{\mathrm{dt}}=-\frac{\mathrm{N}_{\mathrm{A}} \rho_{\mathrm{A}}}{\mathrm{M}_{\mathrm{A}}}(r \\
\frac{\mathrm{dr}}{\mathrm{dt}}=-\frac{\mathrm{N}_{\mathrm{A}} \mathrm{M}_{\mathrm{A}}}{\rho_{\mathrm{A}}}(r) \\
\frac{\mathrm{dr}}{\mathrm{dt}}=-\frac{\mathrm{N}_{\mathrm{A}}}{\rho_{\mathrm{A}} \mathrm{M}_{\mathrm{A}}}
\end{gathered}
$$

 Q ($9(r$
$10(\mu$ 114

 خروجى بهترتيب برابر با

 پیمپ مىشود. طول لوله انتقال 100 متر و قطر آن 10 سانتىمتر است. اكر سطح آب در مخازن يكسان و مجموع ضـرايب
 شتاب جاذبه

-هـ مقدار فشار مطلق مخزن A با اطلاعات دادهشده روى شكل چند بار است؟

 فولادى نشان مىیهد؟؟

 نظر گرفته شود، حداكثر چگگالى (برحسب مطابق شكل برسطح آب شناور باقى بماند؟ (

- DF متوسط سيال برابر Y متر برثانيه و عدد رينولدز برابر كدام است؟

$$
\begin{array}{ll}
\mu Y \circ(Y & 19 \%() \\
99 \circ(4 & 4 \lambda \circ(\mu
\end{array}
$$

 o,0 ord $\frac{\text { m }^{\text {r }}}{\mathbf{s}}$

10 ()
ro (r
100 (Γ
YOO (f
 داراى چشمه حرارتى

- براى انتقال حرارت جابهجايى آزاد در جريان آرام از يكى سطح قائمم داغ، ضريب انتقال حرارت جابهجايى موضعى (ساري $\mathbf{h}_{x}=\mathbf{c x}{ }^{-\frac{1}{\varphi}}$ متوسط (${ }^{\text {(}}$ به ضريب انتقال حرارت جابهجايى محلى در انتها (h) كدام است؟

$$
\begin{aligned}
& \frac{\Delta}{r}() \\
& \frac{r}{r}(r \\
& \frac{1}{r}<r \\
& \frac{r}{r}<r
\end{aligned}
$$

- هA
 حرارتى است.
r حرارتى است.
ץ) درصورتى كه عدد پرانتل (Pr) خيلى كوچى باشد، طول توسعهيافتگى سيالاتى بزرگتر از طول توسعهيافتگى حرارتى است.
¢ ¢) طول توسعهيافتگى سيالاتى هميشه بزر تتر از طول توسعهيافتگى حرارتى است و به Re و Pr ربطى ندارد.

$$
\mu_{\mathrm{L}}\left(\uparrow \quad \mathrm { k } _ { \mathrm { L } } \left(r \quad \rho_{\mathrm{L}}(r) \quad \rho_{\mathrm{V}}()\right.\right.
$$

$$
\begin{aligned}
& \mathrm{T}_{1}>\mathrm{T}_{\Gamma}>\mathrm{T}_{\Gamma}() \\
& \mathrm{T}_{1}<\mathrm{T}_{\Gamma}<\mathrm{T}_{\mu}(\Gamma \\
& \mathrm{T}_{1} \approx \mathrm{~T}_{\Gamma}>\mathrm{T}_{\Gamma}(\mu \\
& \mathrm{T}_{1} \approx \mathrm{~T}_{\Gamma} \approx \mathrm{T}_{\Gamma}(\varphi
\end{aligned}
$$

 () داراى ساختار اول پروتئينها هستند. Y (
 \&
 r (1
$10(r$
ro (${ }^{\mu}$
$100(4$

$$
\varepsilon / \wedge()
$$

$\Delta / \wedge(Y$
φ / \wedge (μ
$r / \wedge(\varphi$
كداميكى از پلىساكاريدهاى زیر،
(Y) آميلوپكتين، حاوى تركيبات غيرآلى هستند.
(Y
() آميلوز، حاوى تركيبات آلى نيستند.

٪) سلولز، داراى گروههاى الحاقي

RNA

$$
\begin{aligned}
& \text { ¢ }
\end{aligned}
$$

()) ميريستيك اسيد ـ تالمين
٪) پالمتيك اسيد ـ گَانين

واكنشهاى زير، بهتر تيب، جزء كدام دسته از واكنشهاى فتوسنتز و انتقال الكترون است؟ -9V

 r \&
 الكتريكى است؟

$$
\begin{array}{ll}
-r(r & \text { ص } \\
+1 & (Y
\end{array}
$$

-99 - فقدان كدام اسيد آمينه زير در رزيم غذايى سبب توقف سنتز پروتئين مىشود و كدام مورد از اسيدهاى آمينه زير
فاقد گروه OH است؟
-V. (Ar = اسيد، وزن مولكولى اسيد استيكى = Po و وزن مولكولى استات سديم
r|

به منظور انتقال مواد در داخل باكترى روشهاى مختلفى وجود دار دارد، هر كدام از موارد زير بهترتيب جزء كداميكـ از $-\mathrm{VI}$

 () غيرفعال، غيرفعال، فعال، غيرفعال (انتا
 كدام مورد درخصوص تفاوت باكترىهاى گرم مثبت و گرم منفى درست است؟ -Vr

 ए ¢ ¢ وجود دارد.

جدول زير نيازهاى تغذيهاى ميكروبها براساس منابع كربن و انرزى است، در جاهاى خالى شمارهگذارى شده ا،
و r بهتر تيب كدام مورد درست است؟

نوع ميكروب	منبع كربن	منبع انرزى	گروه
جلبكهها، باكترى	(1)	نور	فتواتوتروف
باكترى هاى فتوسنتزكننده	تركيبات آلى	نور	(r)
پرو توزوئرها قارجها	تركيبات آلى	(${ }^{(}$)	شيميوهتروتروف

> _ شيميواوتوتروف _ اكسايش تركيبات معدنى $\mathrm{CO}_{\text {_ }}$ ()
> COY (Y

$$
\begin{aligned}
& \text { (Y }
\end{aligned}
$$

-Vه

ب- يكى ميكروب شرايط را براى ميكروب ديگَر مساعد كند.
ج- اثر متقابل منفى، رشد يكى ميكروب مانع از رشد ساير ميكروبها مىشود.
 Y) همزيستى (Commen salism) ـ (Symobiosis \& Symbiotic) ـ ـ سينرزيسم

$$
\begin{aligned}
& \text { ¢ }
\end{aligned}
$$

كـ -Vя -Vя
 (1) باسيلوس استروترموفيلوس ـ آنتاگونيسم

 سينتيكى مونود، اگر در اين بيوراكتور (So () غلظت ورودى سوبسترا)
$D>\mu_{\max }()$
$\mathrm{D} \cong \mu_{\max }(\zeta$
$\mathrm{D} \ll \mu_{\max }(\uparrow$
† () ضريب رقت اين بيوراكتور در شرايط Washout قرار دارد.

كدام مورد درخصوص اسپور در باكترىها نادرست است؟ -VA
 Y) باكترى كه اسپورش را در وسط تشكيل دهد به آن central گَفته میشود. ץ) باكترى كه اسپورش را در ابتدا تشكيل دهد به آن subterminal گَفته مىش آشود. ¢ ¢

 ץ) حالتى از كاتابوليسم بیىهوازى است كه در آن ماده آلى همر دهنده و همر پذيرنده الكترون است و ATP دا در سطح سوبسترا توليد مىشود.
ץ) حالتى از كاتابوليسم است كه در آن ماده با اكسيثن (يا يكى ماده جايگَزين اكسيثن)، بهعنوان پذيرنده نهايى الكترون اكسيد مىشود و معمولاً توليد ATP با فسفوريلاسيون همراه است.
¢ ¢) حالتى از كاتابوليسم (هوازى و بىهوازى) است كه در آن ماده با اكسيزن بهعنوان پذيرنده نهايى پروتون اكسيد

اوليه محيط كشت) و ميزان محصول كدام است
$V=1000 \mathrm{ml}, F=\frac{\mathbf{d v}}{\mathbf{d t}}=r \circ \circ \frac{\mathbf{m l}}{\mathbf{h}}$
$S_{0}=100 \mathrm{~g}$ Glucose $, \mu_{m}=0, \mu h^{-1}, k_{s}=1 \mathbf{g}$ Glucose $/ L$
$\tau=0, \Delta$ gdw cell $/ \mathbf{s}$ Glucose, $\mathbf{x}_{\circ}^{\prime}=\mu \circ g$

$$
\begin{array}{lc}
v \circ \circ \mathrm{ml}, \mid r \mathrm{~g} / \mathrm{L}(r & \Delta \circ \circ \mathrm{ml}, r \circ \mathrm{~g} / \mathrm{L}() \\
r \circ \circ \mathrm{ml}, \log / \mathrm{L}(r & \varepsilon \circ \circ \mathrm{ml}, 1 \varepsilon \mathrm{~g} / \mathrm{L}(r
\end{array}
$$

ترموديناميك:

- 11
「 - - كداميك از عبارات زير درست است؟

Y Y) در مخلوط گازها فشار جزيـى هميشه معنى فيزيكى دارد. ץ اگ اگر دو محلول دو جزيى »الف" و »ب" از دو سازنده يكسان يكى و دو را بهطور آدياباتيك باهم مخلوط كنيم تا محلول »ج" حاصل شود، آنگاه مختصات هر سه محلول در يكى نمودار آنتاليى غلظت بر روى يك خط واقع است. ¢ مخلوط كنيم تا محلول "ج" حاصل شود، آنگاه مختصات هر سه محلول در يک نمودار آنتاليى غلظت بر روى يک

 درون مخزن همزنى با توان مصرفى (واحدها همه همرآهنگَ و اختيارى است.

$$
\begin{array}{ll}
\mu \mu \circ(r & 190(1 \\
110(4 & 1 \circ(r
\end{array}
$$

$$
\begin{array}{ll}
10(Y & \Delta() \\
19(4 & 1 r(r
\end{array}
$$

$$
\text { ^ه - رفتار فازى كازى با استفاده از معادله حالت P(v-b)=RT }\left(\frac{\partial S}{\partial v}\right)_{T} \text { كدام است؟ }
$$

$$
\begin{array}{ll}
\frac{\frac{r}{r} \mathrm{R}}{v-\mathrm{b}}(\tau & \frac{\mu \mathrm{R}}{v-\mathrm{b}}() \\
\frac{\mathrm{R}}{v-\mathrm{b}}(\uparrow & \frac{\mathrm{R} / \tau}{v-\mathrm{b}}(\uparrow
\end{array}
$$

я^- رفتار يكى ماده خالص با استفاده از معادله حالت virial توصيف مىشود كـه در آن ضـريب دوم virial از رابطـه Boyle b- $\frac{\mathbf{a}}{T^{r}}$

$$
\mathrm{b} \sqrt{\mathrm{a}}\left(\uparrow \quad \sqrt{\frac{\mathrm{a}}{\mathrm{~b}}}(r) \sqrt{\frac{\mathrm{b}}{\mathrm{a}}}()\right.
$$

-AV تغيير آنتروبى هوا تقريباً كدام است؟ (واحدها همه همآهنگَ است.
lo,r (Y
$1 / \Delta(1$
rer (
$11 / \mathrm{D}(\Gamma$

1^1 فوتاسيته يكـ ماده خالص در فاز مايع و بخار بهتر تيب از روابط زير بهدست مى آيد. كدام رابطه دماى اشـباع ايــن ماده را در فشار P بيان مى كند؟
$\mathbf{f}^{\boldsymbol{V}}=\mathbf{P}\left(1+\mathbf{a}_{1} \mathbf{P}+\mathbf{a}_{\boldsymbol{r}} \mathbf{P T}\right)$
$\mathbf{f}^{\mathbf{I}}=b_{o}+b_{1} P+b_{r} T$

$$
\begin{array}{lr}
T=\frac{b_{\circ}+b_{1} P-P-a_{1} P^{r}}{a_{r} P^{r}+b_{r}}(r & T=\frac{b_{\circ}+b_{1} P}{a_{r} P^{r}-b_{r}}() \\
T=\frac{b_{o}+b_{1} P-P-a_{1} P^{r}}{a_{r} P^{r}-b_{r}}(\varphi & T=\frac{b_{\circ}+b_{1} P+P+a_{1} P^{r}}{a_{r} P^{r}-b_{r}}(r)
\end{array}
$$

- 19 دو سازنده در اثر اختلاط (در دما و فشار ثابت) كدام است؟ (واح به شكل Z $=1+B^{\prime}$ (

T/AN (T	r,yN (l
f,re (fe	r, ¢ ¢ (${ }^{\text {r }}$

يك مخلوط گازی دو جزيى در مخزنى به دماى T و فشار P وجود دارد، ضريب تراكمپپیرى گاز اول در اين شرايط -9. برابر ^, ^، كسر مولى آن است؟ (مخلوط را محلول ايدئال فرض كنيد.)

$$
\begin{align*}
& 0,94 \text { (Y } \\
& 1 \text { (} \\
& 0, g Y_{\text {(}} \\
& 0,94(4 \\
& \text { كداميك از روابط زير نشاندهندهُ رابطهٔ كلاسيوس كلاپيرون است؟ } \\
& \frac{d P}{d T}=\frac{\Delta H}{T \Delta V}(r) \quad \oint \frac{\delta Q}{T} \leq 0(1 \\
& \frac{\Delta \mathrm{P}}{\rho}+\Delta \mathrm{E}_{\mathrm{K}}+\Delta \mathrm{E}_{\mathrm{P}}=\circ\left(\uparrow \quad \frac{\mathrm{d} \ln \mathrm{P}^{\text {sat }}}{\mathrm{d}\left(\frac{1}{\mathrm{~T}}\right)}=-\frac{\Delta \mathrm{H}^{\text {vap }}}{\mathrm{R}}(\mu\right.
\end{align*}
$$

$$
\begin{aligned}
& -\mathrm{T}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{\mathrm{P}}+\mathrm{P}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{P}}\right)_{\mathrm{T}}\left(\mathrm{r} \quad-\mathrm{T}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{\mathrm{P}}-\mathrm{P}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{P}}\right)_{\mathrm{T}}(1\right. \\
& \mathrm{T}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{\mathrm{P}}-\mathrm{P}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{P}}\right)_{\mathrm{T}}\left(\uparrow \quad \mathrm{~T}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{\mathrm{P}}+\mathrm{P}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{P}}\right)_{\mathrm{T}}\left({ }^{\mu}\right.\right.
\end{aligned}
$$

$\bar{V}_{1}=r \mathbf{x}_{1}^{r}-r \mathbf{x}_{1}^{r}+r \Delta$

است؟ (واحدها اختيارى است.)

$$
\begin{aligned}
& \mu \circ(r \\
& \mu \mu(t
\end{aligned}
$$

r^ (1
rr (r

$$
\begin{array}{ll}
-\mathrm{R} \ln \left(\frac{\pi_{1} \pi_{r}}{\mathrm{P}_{1} \mathrm{P}_{r}}\right) & -\frac{\mathrm{R}}{r} \ln \left(\frac{\pi_{1} \pi_{r}}{\mathrm{P}_{1} \mathrm{P}_{r}}\right) \\
-\mathrm{R} \ln \left(\frac{\mathrm{P}_{1} \mathrm{P}_{r}}{\pi_{1} \pi_{r}}\right)
\end{array}
$$

 اتان به ظرف اضافهشده، چحَالى ويرْه مخلوط كازى به مولكولى گاز پارافينى اوليه كدام است؟ (جرم مولكولى اتان M است.

$$
\begin{array}{ll}
\frac{\frac{r}{r} M-\lambda v \gamma_{g}}{r}(r & \frac{r q \gamma_{g}-M}{r}() \\
\frac{r q \gamma_{g}-M / r}{r}(r & \frac{\lambda \gamma \gamma_{g}-M}{r}(r)
\end{array}
$$

مججموعه دروس تخصصى (رياضى مـهندسى، شيمى بإيه (اوケ)، شيمى آلى (اوک)):

كرمازا كدام است؟
$\rho c v_{x} \frac{\partial T}{\partial x}=\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+\stackrel{\circ}{\mathrm{Q}}, \stackrel{\circ}{\mathrm{Q}}>\circ\left(\mathrm{r} \quad \rho \mathrm{c} \mathrm{v}_{\mathrm{x}} \frac{\partial \mathrm{T}}{\partial \mathrm{x}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{k} \frac{\partial \mathrm{T}}{\partial \mathrm{x}}\right)+\stackrel{\circ}{\mathrm{Q}}, \stackrel{\circ}{\mathrm{Q}}>\circ()\right.$
$\rho c v_{x} \frac{\partial T}{\partial x}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{k} \frac{\partial \mathrm{T}}{\partial \mathrm{x}}\right)+\stackrel{\circ}{\mathrm{Q}}, \stackrel{\circ}{\mathrm{Q}}<\circ\left(\uparrow \quad \rho \mathrm{f} \mathrm{v}_{\mathrm{x}} \frac{\partial \mathrm{T}}{\partial \mathrm{x}}=\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{k} \frac{\partial \mathrm{T}}{\partial \mathrm{y}}\right)+\stackrel{\circ}{\mathrm{Q}}, \stackrel{\circ}{\mathrm{Q}}<\circ(\mu\right.$
-9V معادلأ ديفرانسيل مربوط به انتقال حرارت و نفوذ جرم در حالت نايايدار و در طول يك استوانه، بهترتيب كدام است؟

$$
\begin{aligned}
& \text { (Y بيضوى - سهموى (Y } \\
& \text { () () سهموى - بيضوى } \\
& \text { (Y) بيضوى - بيضوى (}
\end{aligned}
$$

91- براى نوشتن معادلات پايستگى در رتومتر Cone \& Plate، از كدام دستگاه مختصات استفاده مى كنيد؟

) (استوانهاى
(Y) كروى (Y
(
+
-99- بهازاى كدام مقادير و a $\mathbf{~ a}$ معادله ديفرانسيل

$$
\begin{array}{ll}
a=0, b=-r(r & a=0, b=r() \\
a=1, b=-1(r & a=1, b=1(r
\end{array}
$$

(ا-..

$$
\begin{array}{r}
y=x e^{-x}+c_{\Gamma} e^{-r x}() \\
y=c_{1} e^{-x}+c_{\Gamma} e^{-r x}(r \\
y=\left(c_{1}+x\right) e^{-x}+c_{r} e^{-r x}(r \\
y=c_{1} e^{-x}+\left(c_{\varphi}+x\right) e^{-r x}(r
\end{array}
$$

1+1-1 كدام مورد مىتواند توزيع دما در يك پوسته استوانه مطابق شكل را نشان دهد؟

() () تابع سبل نوع دوم
Y) تابع سبل نوع سوم

٪) تركيب خطى توابع سبل نوع اول و و دوم \& (f) تركيب خطى توابع سبل نوع سوم و خهارم
r=0 كدام معادلؤ ديفرانسيل جزئى از نوع سهمى و غير خطى است؟ - ا.「 $\frac{\partial^{r} \mathbf{u}}{\partial \mathbf{x}^{r}}-\frac{\partial^{r} \mathbf{u}}{\partial y^{r}}+\frac{\mathrm{u}}{1+\mathrm{u}}=0\left(r \quad \frac{\partial^{r} \mathbf{u}}{\partial \mathbf{x}^{r}}+\frac{\partial^{r} \mathbf{u}}{\partial \mathbf{y}^{r}}+\frac{\mathrm{u}}{1+\mathbf{u}}=0\right.$ () $\frac{\partial^{r} \mathbf{u}}{\partial y^{r}}-\frac{\partial^{r} \mathbf{u}}{\partial x^{r}}+\frac{u}{1+u}=0\left(r \quad \frac{\partial^{r} u}{\partial x^{r}}-\frac{\partial u}{\partial y}+\frac{u}{1+u}=0(r\right.$

$$
\begin{aligned}
& \begin{cases}\mathbf{u}_{\mathbf{t}}=r \mathbf{u}_{\mathbf{x x}} & 0<\mathbf{x}<r, \quad \mathbf{t}>0 \\
\mathbf{u}(\circ, \mathbf{t})=1 \circ \quad \mathbf{u}(r, t)=r \circ \\
\mathbf{u}(\mathbf{x}, \circ)=r \Delta & \end{cases} \\
& u(x)=10 x+10\left(r \quad u(x)=x^{r}+v x+10(1)\right. \\
& u(x)=0(Y \\
& u(x)=r \Delta \quad(\mu
\end{aligned}
$$

 u(o, x) = $\sin x$

$$
\begin{aligned}
& u(x, t)=\frac{r}{\pi}-\frac{r}{\pi} \sum_{n=r} \frac{(-1)^{n}+1}{n^{r}-1} \cos (n x) e^{-n^{r} t}() \\
& u(x, t)=\frac{1}{\pi}-\sum_{n=1} \frac{(-1)^{n}+1}{n^{r}-1} \cos (n x) e^{-n^{r} t}(r \\
& u(x, t)=\frac{r}{\pi}-\sum_{n=1} \frac{(-1)^{n}-1}{n^{r}+1} \cos (n x) e^{-n^{r} t}(r \\
& u(x, t)=\frac{r}{\pi}-\sum \frac{(-1)^{n}-1}{n^{r}+1} \cos (n x) e^{-n t}(\varphi
\end{aligned}
$$

$$
\begin{gathered}
\frac{r}{r}(1 \\
-\frac{1}{r}(r
\end{gathered}
$$

كدام است؟

سرعت اوليه	غلظت		آزمايش
	$\mathrm{O}_{\boldsymbol{r}}$	NO	
NO mol/(L.s)	$\mathrm{mol} / \mathrm{L}$	$\mathrm{mol} / \mathrm{L}$	
$v \times 10^{-9}$	1×10^{-r}	1×10^{-r}	A

$$
9 \times 10^{4}(1
$$

$$
r \times 10^{\mu}(r
$$

$$
V \times 10^{\mu}(\Gamma
$$

$$
1 \times 10^{\mu}\left({ }^{\varphi}\right.
$$

$14 \times 10^{-\boldsymbol{q}} \quad r \times 10^{-r} \quad 1 \times 10^{-r} \quad$ B
$r 1 \times 10^{-s} \quad r \times 10^{-r} \quad 1 \times 10^{-r} \quad C$
$1 \mu \times 10^{-\varepsilon} \quad r \times 10^{-\mu} \quad r \times 10^{-\mu} \quad D$
$119 \times 10^{-9} \quad r \times 10^{-r} \quad r \times 10^{-r} \quad$ E

مىدهد. فاصله بين سطوح بلور چند pm است؟ ITa/a (1
ral (r DOK (${ }^{(H)}$ rqg (f)

Y०, $\vee \frac{\mathbf{k J}}{\mathbf{m o l}} 1$ - 1 نقطه جوش آب در فشار

 $\mathrm{Fe}_{r} \mathrm{O}_{\mu}=1 \Delta Q / \& \frac{\mathrm{~g}}{\mathrm{~mol}}$
($\mathrm{R}=\Lambda, \Gamma 1 \times 10^{-r} \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
\begin{gathered}
\mu Y)(1 \\
\Delta g \circ(r \\
r \circ(r \\
r r, \mu(r
\end{gathered}
$$

(11.
 Y) اصل عدم قطعيت هايزنبر گَ بيان مى كند كه تعيين همزمان موقعيـت (
الكترون كوچكتر يا مساوى

٪) موادى كه حاوى الكترونهاى جفتشده هستند پارامغناطيس ناميده مىشوند كه از طرف ميدان مغناطيسى بــطــور ضعيفى دفع مىشوند.
 احتمال يافتن الكترون در آن نقطه متناسب است. -III - معادلههاى ترما شيميايى زير مفروض است.
$\varphi \mathrm{NH}_{\mu}(\mathrm{g})+\mathrm{rO}_{\Gamma}(\mathrm{g}) \rightarrow \mathrm{rN}_{\Gamma}(\mathrm{g})+\varsigma \mathrm{H}_{\Gamma} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-|\Delta \Gamma| \mathrm{kJ}$
$\mathrm{N}_{\Gamma} \mathrm{O}(\mathrm{g})+\mathrm{H}_{\Gamma}(\mathrm{g}) \rightarrow \mathrm{N}_{\Gamma}(\mathrm{g})+\mathrm{H}_{\Gamma} \mathrm{O}(\mathrm{l}) \quad \Delta H=-\mu q \vee, \uparrow \mathrm{~kJ}$
$H_{r}+\frac{1}{r} \mathrm{O}_{\mathrm{r}}(\mathrm{g}) \rightarrow \mathrm{H}_{\Gamma} \mathrm{O}(\mathbf{l}) \quad \Delta H=-r \wedge \Delta, q \mathrm{~kJ}$
مقدار $\mathbf{~ H H}$ واكنش زير چند كيلوزول است؟

$$
\begin{aligned}
& -1010(1 \\
& -\Lambda \Delta V, V(Y \\
& +\Lambda \Delta V, V(r \\
& +1010(Y
\end{aligned}
$$

() (آندكان

$$
\begin{aligned}
& \mathbf{U}\left|\mathbf{U}_{(\mathrm{aq})}^{\mu+}\right|\left|\mathrm{Ag}^{+}(\mathrm{aq})\right| \mathbf{A g} \\
& \begin{array}{ll}
-1,09 \mathrm{~V}(\uparrow & -1, \mathrm{V9V}(1) \\
+1,19 \mathrm{~V}(\uparrow & +1,09 \mathrm{~V}(\uparrow)
\end{array}
\end{aligned}
$$

 جـرم مــولى پاکكنندگى خود را از دست مىدهد؟ (معادله واكنش موازنه شود.) $\mathbf{R C O O N a}+\mathrm{CaCl}_{Y} \rightarrow(\mathrm{RCOO})_{Y} \mathrm{Ca}+\mathrm{NaCl}$

$$
\begin{array}{ll}
r \circ(r & 10(1 \\
r \circ(4 & r \circ(r
\end{array}
$$

 از آن، با چند ميلىگرم نيتريكـ اسيد واكنش كامل مىدهد؟
$\left(H=1, N=1 f, O=1 \varepsilon: \mathrm{g} \mathrm{mol}^{-1}\right)$

$$
\begin{aligned}
& 11, r, 10^{\wedge}(1 \\
& 1 r, 9,10^{1}(r \\
& 1 r, a, 10^{\mu}(r \\
& 1 \Lambda, \mu, 10^{\mu}\left(r^{\mu}\right.
\end{aligned}
$$

119－كداميك از تركيبات زير پايدارى بيشترى دارند؟

－IIV حلال ？

119－19 در واكنش جانشينى الكتروندوستى كداميكى از تركيبات زير داراى بيشترين و كمتــرين مقـــدار واكــنشپپــذيرى

（IV
（III
（II
（I
－「آ－نام صحيح آيوپاک（IUPAC）ساختار روبهرو كدام مورد است؟

r（ ）
r（ （
（

 دارد．نام اسيد مجهول كدام است؟
() اسيد والريكـ
؟) اسيد بوتيريى

$$
\begin{aligned}
& \text { (〒) اسيد استيك }
\end{aligned}
$$

$$
\begin{aligned}
& \text { II }>\text { III }>\text { I }>\text { IV (} \\
& \text { I }>\text { III }>\text { IV }>\text { II (} \\
& \text { I }>\text { II }>\text { III }>\text { IV (f } \\
& \text { II }>\text { I }>\text { IV }>\text { III (}{ }^{(}
\end{aligned}
$$

$$
\begin{aligned}
& \text { و } \mathrm{SN}_{r}\left(r \quad \text { و محصصول } \mathrm{SN}_{1}\right. \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { f (r } \\
& \Delta(\Gamma \\
& 9(4
\end{aligned}
$$

Y
()

 شده برابر \&\&

$$
\begin{array}{ll}
\mathrm{C}_{\varphi} \mathrm{H}_{\lambda} \mathrm{O}_{\varphi}(\Gamma & \mathrm{C}_{\Delta} \mathrm{H}_{10} \mathrm{O}_{\varphi}(\\
\mathrm{C}_{\varphi} \mathrm{H}_{\varphi} \mathrm{O}_{\varphi}(\varphi & \mathrm{C}_{\varphi} \mathrm{H}_{\varphi} \mathrm{O}_{\varphi}(\Gamma
\end{array}
$$

(liff
(Y) طيفسنجى فرابنفش
¢
() طيفسنجى جرمى

٪) طيفسنجى مادون قرمز
هזا- براى تبديل زير كدام روش مناسبتر است؟

$$
\begin{aligned}
& \xrightarrow[\mathrm{AlCl}_{\Gamma}]{\mathrm{CH}_{r} \mathrm{Cl}} \xrightarrow{\mathrm{KMnO}_{\mathcal{H}}} \xrightarrow[\mathrm{FeBr}_{\Gamma}]{\mathrm{Br}_{\Gamma}} \text { (1 } \\
& \xrightarrow[\mathrm{FeBr}_{\Gamma}]{\mathrm{Br}_{\Gamma}} \xrightarrow[\mathrm{AlCl}_{\Gamma}]{\mathrm{CH}_{\mu} \mathrm{COCl}} \xrightarrow{\mathrm{KOCl}}(\Gamma \\
& \xrightarrow[\mathrm{FeBr}_{\mu}]{\mathrm{Br}_{\boldsymbol{r}}} \xrightarrow[\mathrm{AlCl}_{\mu}]{\mathrm{C}_{\boldsymbol{r}} \mathrm{H}_{\Delta} \mathrm{Cl}} \xrightarrow{\mathrm{KMnO}_{\mu}}(\Gamma \\
& \xrightarrow[\mathrm{HCl} / \mathrm{AlCl}_{\mu}]{\mathrm{CH}_{\gamma}=\mathrm{CH}_{\gamma}} \xrightarrow[\mathrm{FeBr}_{\Gamma}]{\mathrm{Br}_{\mu}} \xrightarrow{\mathrm{KMnO}_{\varphi}}(\uparrow
\end{aligned}
$$

