

* قاوطلب گرامى، عدم درج مشخصات و امضا در مندرجات جدول زير، بهمنزلهُ عدم حضور شما در جلسهُ آزمون است.

PART A: Vocabulary
Directions: Choose the word or phrase (1), (2), (3), or (4) that best completes each sentence. Then mark the answer on your answer sheet.

1- When you \qquad a meeting, it is important to speak clearly, confidently and at a good pace.

1) assess
2) propagate
3) address
4) impress

2- People like the newly proposed system, but because of the costs involved we do not believe it is ---------, and we need to look for other options.

1) compliant
2) defensive
3) ingenuous
4) viable

3- The country in question is very poor, and one in seven children dies in

1) infancy
2) nutrition
3) malfunction
4) mortality

4- I don't consider myself to be particularly ---------, but when I'm given a job, I make sure it gets done.

1) industrious
2) spontaneous
3) risky
4) unexceptional

5- The new airliner is more environmentally-friendly than other aircraft, its only being its limited flying range.

1) demand
2) drawback
3) controversy
4) attribute

6- The celebrity will --------- assistance from the police to keep stalkers away from his property.

1) extend
2) invoke
3) absolve
4) withdraw

7- When plates in the Earth's crust slide or grind against one another, an earthquake with devastating consequences may be

1) derived
2) surpassed
3) triggered
4) traced

PART B: Cloze Test

Directions: Read the following passage and decide which choice (1), (2), (3), or (4) best fits each space. Then mark the correct choice on your answer sheet.

The new species was named Maiacetus inuus, which means "mother whale," (8) \qquad in the family Protocetidae. Assignment to a new species was justified due to critical differences from other protocetid whales, such as solidly co-ossified left and right dentaries (lower jaws), (9) in the ankle, and significant disparity in hind
limb elements. The fossils show (10) this new species' length is unimpressive relative to some extant (living) whales, but still, Maiacetus inuus measures a respectable 2.6 meters.
8- 1) placed
2) that placed
3) was placed
4) and was placed
9- 1) there were variations
2) varying
3) variations
4) which varied
10- 1) when
2) that
3) although
4) for

PART C: Reading Comprehension
Directions: Read the following three passages and answer the questions by choosing the best choice (1), (2), (3), or (4). Then mark the correct choice on your answer sheet.

PASSAGE 1:

Engineers use their knowledge, appropriate experience or tacit knowledge to find suitable solutions to a particular problem. Creating an appropriate mathematical model of a problem often allows them to analyze it, and to test potential solutions.

More than one solution to a design problem usually exists so the different design choices have to be evaluated on their merits before the one judged most suitable is chosen.

Engineers typically attempt to predict how well their designs will perform to their specifications prior to full-scale production. They use, among other things: prototypes, scale models, simulations, destructive tests, nondestructive tests, and stress tests. Testing ensures that products will perform as expected but only in so far as the testing has been representative of use in service. For products, such as aircraft, that are used differently by different users failures and unexpected shortcomings can be expected throughout the operational life of the product.

The study of failed products is known as forensic engineering. It attempts to identify the cause of failure to allow a redesign of the product and so prevent a re-occurrence. Careful analysis is needed to establish the cause of failure of a product. The consequences of a failure may vary in severity from the minor cost of a machine breakdown to large loss of life in the case of accidents involving aircraft and large stationary structures like buildings and dams.

11- The word "tacit" in paragraph 1 is similar in meaning to

1) formal
2) general
3) expressive
4) implicit

12- Choosing the appropriate solution, as stated in the passage, ----------.

1) requires the quality assessment of the various design choices
2) leads to creation of various models for existing solutions
3) makes engineers broaden their specifications
4) predicts the expertise of an engineer

13- Engineers use all of the following tests to predict how well their designs will perform to their specifications EXCEPT \qquad

1) damaging the specimen that is being tested
2) the production of a computer model of something
3) the deployment of resources and operational costs
4) performance validation of a product under expected load conditions

14- It's stated in the passage, the aircraft products

1) are compatible with experimental programs in terms of efficiency
2) show types of unexpected defects in different applications
3) require the least necessary design changes
4) have a high prolonged operational life

15- Forensic engineering, according to the passage, is exactly defined as

1) developing a design from a range of potentially viable alternatives
2) the investigation of failures ranging from serviceability to catastrophic
3) designing aircraft and large stationary structures like buildings and dams
4) analyzing performance assumptions about how such a design will behave once constructed

PASSAGE 2:

The engineering profession engages in a wide range of activities, from large collaboration at the societal level, and also smaller individual projects. Almost all engineering projects are obligated to some sort of financing agency: a company, a set of investors, or a government. The few types of engineering that are minimally constrained by such issues are pro bono engineering and open-design engineering.

By its very nature engineering has interconnections with society, culture and human behavior. Every product or construction used by modern society is influenced by engineering. The results of engineering activity influence changes to the environment, society and economies, and its application brings with it a responsibility and public safety. Engineering projects can be subject to controversy.

Engineering is a key driver of innovation and human development. Sub-Saharan Africa, in particular, has a very small engineering capacity which results in many African nations being unable to develop crucial infrastructure without outside aid. The attainment of many of the Millennium Development Goals requires the achievement of sufficient engineering capacity to develop infrastructure and sustainable technological development.

Engineering companies in many established economies are facing significant challenges with regard to the number of professional engineers being trained, compared with the number retiring. There are many negative economic and political issues that this can cause, as well as ethical issues. It is widely agreed that the engineering profession faces an "image crisis", rather than it being fundamentally an unattractive career.

16- It's stated in the passage that nearly all engineering projects \qquad

1) cause a collaboration between individuals and society
2) work as mediators connecting companies with engineers
3) are engaged in evaluating the financial budgets of companies
4) are constrained to a company, a set of investors, or a government

17- Pro bono engineering and open design engineering

1) are considered as types with the lowest budget
2) are the disciplines with the least importance
3) are not obligated to some special financing agencies
4) are responsible for maintaining the financial records in companies

18- According to paragraph 2, all of the following are true about engineering EXCEPT

1) increasing controversial subjects in the society
2) influencing society, culture and human behavior
3) involving all products utilized in the modern society
4) helping communities to be and feel safe

19- Sub-Saharan Africa, as mentioned in the passage,

1) does not care to its crucial infrastructures
2) includes countries with small engineering potentials
3) is a symbol of innovation and human development
4) could attain to a sustainable technological development

20- The term "image crisis" mentioned in paragraph 4

1) modifies the unattractiveness of engineering
2) emphasizes all negative issues in engineering
3) represents engineering as a challengeable career
4) shows that the number of retired is more in engineering than employed

PASSAGE 3:

Business Engineering deals with the relationship between professional engineering, IT systems, business administration and change management. Engineering management or "Management engineering" is a specialized field of management concerned with engineering practice or the engineering industry sector. The demand for managementfocused engineers (or from the opposite perspective, managers with an understanding of engineering), has resulted in the development of specialized engineering management degrees that develop the knowledge and skills needed for these roles.

During an engineering management course, students will develop industrial engineering skills, knowledge, and expertise, alongside knowledge of business administration, management techniques, and strategic thinking. Engineers specializing in change management must have in-depth knowledge of the application of industrial and organizational psychology principles and methods. Professional engineers often train as certified management consultants in the very specialized field of management consulting applied to engineering practice or the engineering sector. This work often deals with large scale complex business transformation or Business process management initiatives in aerospace and defense, automotive, oil and gas, machinery, pharmaceutical, food and beverage, electrical \& electronics, power distribution \& generation, utilities and transportation systems.

21- Engineering management, according to the passage, ----------.

1) is involvement of the practice of management with the practice of engineering
2) develops the knowledge and skills needed for various sectors of engineering
3) concentrates on knowledge of engineering in the future engineers

4) is a specialized field of the engineering industry sector
22- Students of engineering management specialize at all of the following EXCEPT

1) preparing for future challenges
2) focusing on general theories and hypotheses
3) managing an organization's resources, time, and people
4) having high levels of performance within a given domain

23- Change management engineering requires

1) a few professional psychologists to help business engineers
2) to be identified as a new specialized sector in industrial psychology
3) to train consultants to facilitate the complex business transformations
4) a very detailed study to use psychological principles to address industry issues

24- The word "initiatives" in paragraph 2 is similar in meaning to

1) creativities
2) structures
3) investments
3) productions

25- The writer of this passage wants to

1) attempt to make business engineering known to others
2) show business management as a new perspective in engineering
3) compare business management with the other engineering domains
4) highlight the sub-branches of business management to students

رياضيات (آمار و احتمال، معادلات ديفرانسيل و رياضيات مـهندسى):

$r, f, r, \circ, l, r, r, \Delta, 1, \circ, r, l, r, r, r, 1, \circ, v, r, \lambda$

$$
\left.\begin{array}{rl}
r / \Delta & (1) \\
r & (r
\end{array}\right)
$$

 پپر تاب احتمال رخداد رنگَ سياه به شرطى كه در پر تاب قبل رنگَ سياه آمده باشد كه در ير تاب قبل رنتَ سفيد آمده باشد در پر تاب دوم رنگَ مهره سفيد باشد، كدام است؟

$$
\frac{r_{0}}{r_{1}}(1
$$

$$
\frac{1 V}{r \lambda}(r
$$

$$
\frac{19}{4 \lambda}(\mu
$$

$$
\frac{i r}{\mu \lambda}(\kappa
$$

$$
\begin{gathered}
1(1 \\
\frac{1}{r}(r \\
\text { e }(r \\
-1(r
\end{gathered}
$$

. كدام است؟

$$
\frac{1}{44}(1
$$

$$
\frac{1}{\Lambda}(r
$$

$$
\frac{1}{r}(\mu
$$

$$
\frac{1}{r}(\varphi
$$

اr- فرض كنيد X $\mathbf{~ X ~}$ $f(x)=r e^{-r x} \quad, \quad x>0$

$$
\begin{gathered}
\frac{1}{r}\left(1-\ln \frac{\Delta}{q}\right)(1) \\
\frac{1}{r} \ln \frac{\Delta}{q}(r \\
\frac{1}{r}\left(\ln \frac{q}{\Delta}-1\right)(r \\
\frac{1}{r} \ln \frac{q}{\Delta}(r
\end{gathered}
$$

مريم به كلاس برسد، كدام است؟

$$
\begin{aligned}
& 0, V 4 \wedge 9(1 \\
& 0, V 4 \Delta 9(r \\
& 0, r \Delta I F(r \\
& 0, r \Delta F)(4
\end{aligned}
$$

X	\circ	1
\circ	$\frac{1}{r}$	$\frac{1}{r}$
1	$\frac{1}{r}$	$\frac{1}{q}$

$$
\begin{aligned}
& \frac{1}{r}() \\
& \frac{1}{r}(r \\
& \frac{V}{\pi r}(r \\
& \frac{\Delta}{\pi r}(\varphi
\end{aligned}
$$

 انتخاب مىشوند. نسبت افراد چپپدست در هر نمونه محاسبه و هيسـتـوترام مى شود. كدام فاصله دربر كير نده \&^٪ از مقادير در هيستوكَرام است؟

$$
\begin{aligned}
& 0,1 \pm 0,010 \text { (1 } \\
& 0,1 \pm 0,01 r 4 \text { (r } \\
& 0,1 \pm 0,019 \mathrm{r} \\
& 0,1 \pm 0,0 r_{0}
\end{aligned}
$$

 در مقابل $\mathbf{f}_{\mathbf{p}}(\mathbf{x})=\mathbf{p}(1-\mathbf{p})^{\mathbf{x}} \quad, \quad \mathbf{x}=0,1, r, \ldots$

$$
\begin{aligned}
& \frac{\wedge}{q}() \\
& \frac{1}{r}(r \\
& \frac{r}{r}(r \\
& \frac{1}{q}(\varphi
\end{aligned}
$$

צฯ- معادلهٔ ديفرانسيل دسته دوايرى در صفحه كه مركز آنها روى محور با باشد، كدام است؟

$$
\begin{aligned}
1+y y^{\prime \prime}+\left(y^{\prime}\right)^{r} & =\circ() \\
1+y y^{\prime \prime}-\left(y^{\prime}\right)^{r} & =\circ(r \\
1+y y^{\prime \prime}-y^{\prime} & =\circ\left({ }^{r}\right. \\
1+y y^{\prime \prime}+y^{\prime} & =\circ\left({ }^{\uparrow}\right.
\end{aligned}
$$

جواب عمومى معادله́ ديفرانسيل \quad جr

$$
\begin{array}{ll}
y^{\varphi}+x^{r} y^{r}=c(r & y^{\varphi}+x^{r} y^{r}=c \quad() \\
y^{r}+x^{r} y^{r}=c(\varphi & y^{r}+x^{r} y^{\varphi}=c
\end{array}
$$

$$
\begin{aligned}
& \ln (1+\sqrt{r \mathrm{x}})(1 \\
& \ln \left(\mathrm{x}+\sqrt{1+\mathrm{x}^{r}}\right)(r \\
& \ln \left(\mathrm{x}^{r}+\sqrt{1+\mathrm{x}}\right)(r \\
& \ln \left(\mathrm{x}+\sqrt{1+\mathrm{x}^{r}}\right)+\mathrm{x}-\mathrm{x}^{r}\left({ }^{r}\right.
\end{aligned}
$$

 $y^{(\varphi)}+r y^{(r)}+y=0$

$$
\begin{aligned}
& \begin{array}{c}
-1() \\
-\frac{\sqrt{r}}{r}(r \\
\frac{\sqrt{r}}{r}(r \\
1(\mu
\end{array} \\
& \ln r(1 \\
& \ln \Gamma(Y \\
& \Gamma \ln \mu(\Gamma \\
& r \ln r(4 \\
& \text { (حاصل } \int_{0}^{\infty} \frac{d x}{x^{\natural}+1} \\
& \frac{\pi}{9}(1 \\
& \frac{\pi}{r}(r \\
& \frac{\pi}{\mu}(\Gamma \\
& \frac{r \pi}{r}\left({ }_{r}\right.
\end{aligned}
$$

($\mathrm{f}(\mathrm{z}), \mathrm{C}:|z|=r)$ همهجا درون و روى مرز C تحليلى است)
f(i) (
$\mathrm{f}^{\prime}(\mathrm{i})(\mathrm{r}$
$r \pi i f(i)(r$
$r \pi \mathrm{if}^{\prime}(\mathrm{i})\left({ }^{〔}\right.$

ץ مىتوان كَت؟

$$
\begin{aligned}
& \text { Y به شرط ثابت بودن u تحليلى است. } \\
& \text { ¢ } \\
& \text { () همواره تحليلى است. } \\
& \text { T) به شرط ثابت بودن V V تحليلى است. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{cases}\mathbf{u}_{t t}-\mathbf{c}^{r} \mathbf{u}_{\mathbf{x x}}=0 & -\infty<x<\infty \\
\mathbf{u}(\mathbf{x}, \circ)=\mathbf{f}(\mathbf{x}) & -\infty<x<\infty \\
\mathbf{u}_{t}(\mathbf{x}, \circ)=\mathbf{c f}^{\prime}(\mathbf{x}) & -\infty<x<\infty\end{cases}
\end{aligned}
$$

() از مجموع دو موج تشكيلشده كه يكى بدون تغييرشكل با سرعت ثابت c به راست مىرود و ديگرى بدون
تغييرشكل با سرعت ثابت c به چپ میرود.

 ¢ ¢ (
 $\begin{cases}\mathbf{u}_{\mathbf{t t}}-\mathbf{u}_{\mathbf{x x}}=\circ & \circ<\mathbf{x}<\mathrm{L}, \mathrm{t}>0 \\ \mathbf{u}(\mathbf{x}, \circ)=\mathbf{x}(\mathrm{L}-\mathbf{x}) & \circ \leq \mathbf{x} \leq \mathbf{L} \\ \mathbf{u}_{\mathbf{t}}(\mathbf{x}, \circ)=0 & \circ \leq \mathbf{x} \leq \mathbf{L} \\ \mathbf{u}(\circ, \mathbf{t})=\mathbf{u}(\mathrm{L}, \mathrm{t})=\circ, \quad \mathbf{t}>\circ\end{cases}$

$$
\begin{aligned}
& \frac{L^{r}}{19}(1 \\
& \frac{L^{r}}{\Lambda}(\zeta \\
& \frac{\mu L^{r}}{19}(\mu \\
& \text { (Y) صفر }
\end{aligned}
$$

مبانى كامبيوتر و برنامهسازى:
¢ヶ- خروجى تابع زير كدام است؟

int func (int a int b)

\{
if $(a<b)$
return 0 ;
else
return func $(a-b, b)+1 ;$
\}
b بر a ا خارجقست تقسيم
b بر با باقيماندهٔ تقسيم a
 نوشتهشدهاست. كدام مورد درست است؟

```
for ( \(\mathbf{i}=\mathbf{1 ; ~} \mathbf{i}<=\mathbf{n} ; \mathbf{i}++\) )
    for \((\mathrm{j}=\mathbf{1} ; \mathrm{j}<=\mathbf{n} ; \mathbf{j}++)\{\)
    \(\mathrm{C}[\mathrm{i}][\mathrm{j}]=0\);
    for \((k=1 ; k<=\mathbf{n} ; \mathbf{k}++)\)
    \(\mathrm{C}[\mathrm{i}][\mathrm{j}]=\mathrm{C}[\mathrm{i}][\mathrm{j}]+\mathrm{A}[\mathrm{i}][\mathrm{k}] * \mathrm{~B}[\mathrm{k}][\mathrm{j}] ;\)
    \}
```

$$
\begin{aligned}
& \text { for }(i=1 ; i<=n ; i++) \\
& \quad \text { for }(j=1 ; j<=n ; j++)\{ \\
& C[i][j]=A[i][1] * B[1][j] ; \\
& \text { for }(k=2 ; k<=n ; k++) \\
& C[i][j]=C[i][j]+A[i][k] * B[k][j] ;
\end{aligned}
$$

(الف)
(ب)
()

Abstract

 زير كدام كار را انجام مىدهد؟
unsigned int G (unsigned int a , unsigned int b)

\{

```
if (a<b) swap (& a,& b);
```

while ($\mathrm{b}<>0$)
\{
int $\mathbf{r}=\mathbf{a} \%$ b;
$\mathbf{a}=\mathbf{b} ;$
$\mathrm{b}=\mathbf{r} ;$
\}
return a;
\}

- - مرحلئ اول در روش مر تبسازى انتخابى (Selection Sort) كدام است؟

1) وسط ليست را پيدا مى كنيه.
Y) هر عدد را با عدد كنارى آن مقايسه مى كنيه.
٪) مكان كوچکـترين يا بزرگَترين عدد را پیدا مى كنيم.
¢) كوچكتر ين يا بزر رَتر ين عدد را با وسط ليست جابهجا مىكنيه.

```
int test (char *s, char d)
```

\{
int $\mathrm{i}, \mathrm{n}=0$;
for $(i=0 ; s[i] ;++i)$
$\mathbf{n}=\mathbf{n}+(\mathrm{s}[\mathrm{i}]=\mathbf{d})$;
retrun n;
\}

اهـ - قطعه برنامه C زير را در نظر بگَير يد (n تعداد عناصر آرايه A است.) بعد از اجراى برنامه، چه اتفاقى مىافتد؟ int $m=n / 2$;
for (int $\mathbf{i}=\mathbf{0} ; \mathbf{i}<\mathbf{m} ; \mathbf{i}+$)
\{
int $t=A[i] ;$
$\mathrm{A}[\mathrm{i}]=\mathrm{A}[\mathrm{n}-\mathrm{i}-1] ;$
$\mathrm{A}[\mathrm{n}-\mathrm{i}-1]=\mathrm{t}$;
\}

$$
\begin{aligned}
& \text { () نيمهٔ اول آرايه A مرتب مىشود. } \\
& \text { A [j] = A [m+j]; j=1, ...m (¢ }
\end{aligned}
$$

 $\mathrm{i}=2$;
while ($\mathrm{M} \% \mathrm{i}<>\mathbf{0}$)
i++;

$$
\begin{array}{ll}
i>M(r & i=M() \\
i<\frac{M}{2}(\uparrow & i<M(\uparrow
\end{array}
$$

 بزرگتر است، چند مقايسه مورد نياز است؟

\checkmark (r	$9(1$
$9(\%)$	$\wedge(\%$

 تعداد عناصر ورودى است.)

```
1 min=S[0];
2 max = S[0];
3 for(i=1; i < n; i++)
{
if(S[i]< min)
6 min=S[i];
else if (S[i]<max)
8 max=S[i];
9 }
```

(Y) بيشترين تعداد مقايسه (Y (

(

هه- تعداد تكرار دستور ; + +
int $x=0$;
int $\mathbf{i}=\mathbf{n}$;
while ($\mathrm{i}>1$)
\{
x++;
$\mathrm{i}=\mathrm{i} / 2$;
\}

$$
\begin{aligned}
& n^{2}(r \\
& n \log n(4 \\
& \text { n (} \\
& \log (n)(\mu \\
& \text { خروجى تابع زير بهازاى n=4 }
\end{aligned}
$$

```
int f(int n)
```

\{
if $(\mathrm{n}<3)$ return n ;
return $f(n-1)+f(n-2)+f(n-3) ;$
\}

$9(r$	$\Delta()$
$1(4$	$V(r$

```
int func(int n)
{
    if ( }\textrm{n}==0)\mathrm{ return 0;
    return (n+func (n-1));
}
```


- ه^ تابع بازگشتى زير را درنظر بگَير يد. براى n=8
int $\mathbf{T}($ int n$)$
\{
if ($\mathrm{n}<=1$) return I;
else
return $T(n / 2)+T(n / 2) ;$
\}


```
int main ()
    {
        double e,f;
        e=f=1.0;
        for (int n=1; n <= 100; n++)
        {
        f/= n;
        e+= f;
        }
        cout << e;
}
```

() اشتباه برنامه در اين است كه حاصل تقسيم بر اعداد صحيح، صحيح است لذا n بايد از نوع double باشد.
 ٪) خطاى number over flow بهدليل محاسبه n! براى اعداد بزر ریى (ヶ) خطاى round off بددليل محاسبه -9* ترتيب انجام عمليات در عبارت زير بهچهصورت است؟ (گَزينهها از راست به جپ است) $(\mathrm{x}+\mathrm{y}) \boldsymbol{\&} \boldsymbol{\&}!(\mathrm{x}-\mathrm{y} * \mathrm{z}>\mathrm{w})$

$$
\begin{aligned}
& >6-6+6 * \subset \& \&!!(\uparrow \\
& \text { \& \& ! ! }>6 \text { - } 6 * 6+(\uparrow
\end{aligned}
$$

```
int test (int x, int y)
    {
        if(x== 0)
        return y;
        else
            return test (--x,y++);
    }
```

$$
y-x(4 \quad x+y(r \quad x(r) y()
$$

(Y
char $s[]=" C++", k, i, j ;$
for $(i=0, j=\operatorname{strlen}(s)-1 ; i<j / 2 ;++i,--j)$
$\{$

$$
\mathrm{k}=\mathrm{s}[\mathbf{i}]
$$

$$
\mathrm{s}[\mathrm{i}]=\mathrm{s}[\mathrm{j}]
$$

$$
\mathrm{s}[\mathrm{j}]=\mathbf{k}
$$

\}

$$
++\mathrm{C}(\varphi \quad+\mathrm{C}+(\Gamma \quad \mathrm{C}++(\mathrm{r} \quad \mathrm{C}++++\mathrm{C}()
$$

Y
char * p ;
int $* \mathbf{q}$;

$$
\operatorname{sizeof}(p)>\operatorname{sizeof}(q)(\gamma \quad \operatorname{sizeof}(p)<\operatorname{sizeof}(q)
$$

\vee	$\&$	Δ	f	r	r	1	\circ
1	\circ						

$$
\begin{gathered}
-1 r \lambda(1 \\
-I r V(Y \\
ر \text { Irs (r } \\
\text { Ir }
\end{gathered}
$$

 r r

دارِّ										
\mathbf{z}	0.0	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 4878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

